|
-
Khrenova M, Topol I, Collins J, Nemukhin A.
Estimating orientation factors in the FRET theory of fluorescent proteins: the TagRFP-KFP pair and beyond.
Biophys J. 2015 Jan 6;108(1):126-32 doi: 10.1016/j.bpj.2014.11.1859
pmid: 25564859
|
|
-
Bonekamp NA, Islinger M, Lázaro MG, Schrader M.
Cytochemical detection of peroxisomes and mitochondria.
Methods Mol Biol. 2013;931:467-82 doi: 10.1007/978-1-62703-056-4_24
pmid: 23027018
|
-
Protocols for dual peroxisomes and mitochondria staining.
|
-
Rusanov AL, Ivashina TV, Vinokurov LM, Fiks II, Orlova AG, Turchin IV, Meerovich IG, Zherdeva VV, Savitsky AP.
Lifetime imaging of FRET between red fluorescent proteins.
J Biophotonics. 2010 Dec;3(12):774-83 doi: 10.1002/jbio.201000065
pmid: 20925107
|
-
Constructs used: mammalian and bacterial expression vectors encoding a FRET pair of TagRFP and KFP-Red linked by a peptide containing DEVD caspase-3 cleavage site (subcloned from pKindling-Red-N vector).
-
Expression system: BL21(DE3) E. coli starin and human melanoma cell line melKor.
-
Detection system: fluorescence lifetime imaging microscopy (FLIM) and fluorescence lifetime whole-body imaging (FLBI).
|
-
Liu X, Weaver D, Shirihai O, Hajnóczky G.
Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics.
EMBO J. 2009 Oct 21;28(20):3074-89 doi: 10.1016/j.ab.2011.01.034
pmid: 19745815
|
-
Constructs used: mammalian expression vector encoding mitochondrial matrix-targeted KFP-Red (Kindling-Red-mito).
-
Expression system: H9c2 cells transiently transfected with expression vectors using Lipofectamine 2000 or electroporation.
-
Detection system: Olympus IX70 microscope (568nm laser line was used for photoactivation and excitation of KFP-Red).
|
-
Nowotschin S, Eakin GS, Hadjantonakis AK.
Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives.
Trends Biotechnol. 2009 May;27(5):266-76 doi: 10.1016/j.tibtech.2009.02.006
pmid: 19339068
|
|
-
Bhattacharyya S, Kulesa PM, Fraser SE.
Vital labeling of embryonic cells using fluorescent dyes and proteins.
Methods Cell Biol. 2008;87:187-210 doi: 10.1016/S0091-679X(08)00210-0
pmid: 18485298
|
|
-
Olenych SG, Claxton NS, Ottenberg GK, Davidson MW.
The fluorescent protein color palette.
Curr Protoc Cell Biol. 2007 Sep;Chapter 21:Unit 21.5 doi: 10.1002/0471143030.cb2105s36
pmid: 18228502
|
|
-
Mocz G.
Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics.
Mar Biotechnol (NY). 2007 May-Jun;9(3):305-28
pmid: 17372780
|
|
|
|
-
Henderson JN, Remington SJ.
The kindling fluorescent protein: a transient photoswitchable marker.
Physiology (Bethesda). 2006 Jun;21:162-70.
pmid: 16714474
|
|
-
Lukyanov KA, Chudakov DM, Fradkov AF, Labas YA, Matz MV, Lukyanov S.
Discovery and properties of GFP-like proteins from nonbioluminescent anthozoa.
Methods Biochem Anal. 2006;47:121-38
pmid: 16335712
|
|
-
Lukyanov KA, Chudakov DM, Fradkov AF, Labas YA, Matz MV, Lukyanov SA.
Discovery and properties of GFP-like proteins from non-bioluminescent Anthozoa.
In: Green fluorescent protein: properties and applications. Chalfie M, Kain S, (Eds). Willey-Liss, New York
ISBN-13: 978-0-471-73682-0. 2006;121-38 http://books.google.com
|
|
-
Chudakov DM, Lukyanov S, Lukyanov KA.
Fluorescent proteins as a toolkit for in vivo imaging.
Trends Biotechnol. 2005 Dec;23(12):605-13
pmid: 16269193
|
|
-
Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV.
Innovation: Photoactivatable fluorescent proteins.
Nat Rev Mol Cell Biol. 2005 Nov;6(11):885-91
pmid: 16167053
|
|
-
Quillin ML, Anstrom DM, Shu X, O'Leary S, Kallio K, Chudakov DM, Remington SJ.
Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution.
Biochemistry. 2005 Apr 19;44(15):5774-87
pmid: 15823036
|
-
Constructs used: pQE30-based bacterial expression vectors encoding KFP-Red.
-
Expression system: E. coli JM109 DE-3 strain.
-
Detection system: crystal structure of KFP-Red in nonkindled/dark state.
|
-
Wilmann PG, Petersen J, Devenish RJ, Prescott M, Rossjohn J.
Variations on the GFP chromophore: A polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata.
J Biol Chem. 2005 Jan 28;280(4):2401-4
pmid: 15542608
|
-
Constructs used: pQE10N-based bacterial expression vector carrying KFP-Red coding sequence (subcloned from pKindling-Red-N vector).
-
Expression system: E. coli BL21 strain.
-
Detection system: crystal structure of KFP-Red in nonkindled/dark state.
|
-
Chudakov DM, and Lukyanov KA.
Using photoactivatable GFPs to study protein dynamics and function.
In: Jorde LB, Little PFR, Dunn MJ and Subramaniam S. (Eds), Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley & Sons Ltd: Chichester. 2005;2129-37 http://books.google.com
|
|
-
Comley J.
HIGH CONTENT SCREENING emerging importance of novel reagents/probes and pathway analysis.
Drug Discovery World Summer. 2005;31-53 http://clients.parabolasoft.co.uk
|
|
-
Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA.
Chromophore environment provides clue to "kindling fluorescent protein" riddle.
J Biol Chem. 2003 Feb 28;278(9):7215-9
pmid: 12496281
|
-
Constructs used: pQE30-based bacterial expression vectors encoding mutants of non-fluorescent chromoprotein asFP595 from the sea anemone Anemonia sulcata.
-
Expression system: E. coli.
-
Detection system: Nikon Optiphot fluorescent microscope and Olympus US SZX12 fluorescent stereo microscope (TRITC filter set).
|
-
Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA.
Kindling fluorescent proteins for precise in vivo photolabeling.
Nat Biotechnol. 2003 Feb;21(2):191-4
pmid: 12524551
|
-
Constructs used: pQE30-based bacterial expression vector pKindling-Red-B; mRNA encoding KFP-Red; mammalian expression vector pKindling-Red-mito encoding mitochondria-targeted KFP-Red.
-
Expression system: transformed E. coli; Xenopus laevis embryos microinjected with mRNA encoding KFP-Red; rat cell line PC12 transfected with pKindling-Red-mito vector (calcium phosphate transfection method).
-
Detection system: Reversibility of KFP-Red kindling is controlled by both the light intensity level and the total light dose. Low-intensity green light causes no kindling of KFP-Red and can therefore be used as the excitation light to visualize both reversibly and irreversibly kindled KFP-Red without inducing background signal growth.
Transformed E. coli colonies were observed through 5x objective Nikon Optihot fluorescent microscope (TRITC filter set, 100W lamp), reversible kindling of KFP-Red was achieved by irradiation through 20x objective for 4-5 sec., bright irreversible kindling was achieved by 10 sec. irradiation through 40x objective;
Kindled KFP-Red in PC12 cells was monitored under Zeiss confocal LSM510 fluorescent microscope (1% power of 1mW 543nm laser line, TRITC filter set), reversible kindling of KFP-Red was achieved by several scans with 5% power laser and irreversible kindling by brief irradiation with 30% power laser.
|