Eng | Ru

    KFP-Red

References citing KFP-Red:

  • Khrenova M, Topol I, Collins J, Nemukhin A.
    Estimating orientation factors in the FRET theory of fluorescent proteins: the TagRFP-KFP pair and beyond.
    Biophys J. 2015 Jan 6;108(1):126-32 doi: 10.1016/j.bpj.2014.11.1859
    pmid: 25564859
     
  • Bonekamp NA, Islinger M, Lázaro MG, Schrader M.
    Cytochemical detection of peroxisomes and mitochondria.
    Methods Mol Biol. 2013;931:467-82 doi: 10.1007/978-1-62703-056-4_24
    pmid: 23027018
  1. Protocols for dual peroxisomes and mitochondria staining.
  • Rusanov AL, Ivashina TV, Vinokurov LM, Fiks II, Orlova AG, Turchin IV, Meerovich IG, Zherdeva VV, Savitsky AP.
    Lifetime imaging of FRET between red fluorescent proteins.
    J Biophotonics. 2010 Dec;3(12):774-83 doi: 10.1002/jbio.201000065
    pmid: 20925107
  1. Constructs used: mammalian and bacterial expression vectors encoding a FRET pair of TagRFP and KFP-Red linked by a peptide containing DEVD caspase-3 cleavage site (subcloned from pKindling-Red-N vector).
  2. Expression system: BL21(DE3) E. coli starin and human melanoma cell line melKor.
  3. Detection system: fluorescence lifetime imaging microscopy (FLIM) and fluorescence lifetime whole-body imaging (FLBI).
  • Liu X, Weaver D, Shirihai O, Hajnóczky G.
    Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics.
    EMBO J. 2009 Oct 21;28(20):3074-89 doi: 10.1016/j.ab.2011.01.034
    pmid: 19745815
  1. Constructs used: mammalian expression vector encoding mitochondrial matrix-targeted KFP-Red (Kindling-Red-mito).
  2. Expression system: H9c2 cells transiently transfected with expression vectors using Lipofectamine 2000 or electroporation.
  3. Detection system: Olympus IX70 microscope (568nm laser line was used for photoactivation and excitation of KFP-Red).
  • Nowotschin S, Eakin GS, Hadjantonakis AK.
    Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives.
    Trends Biotechnol. 2009 May;27(5):266-76 doi: 10.1016/j.tibtech.2009.02.006
    pmid: 19339068
     
  • Bhattacharyya S, Kulesa PM, Fraser SE.
    Vital labeling of embryonic cells using fluorescent dyes and proteins.
    Methods Cell Biol. 2008;87:187-210 doi: 10.1016/S0091-679X(08)00210-0
    pmid: 18485298
     
  • Olenych SG, Claxton NS, Ottenberg GK, Davidson MW.
    The fluorescent protein color palette.
    Curr Protoc Cell Biol. 2007 Sep;Chapter 21:Unit 21.5 doi: 10.1002/0471143030.cb2105s36
    pmid: 18228502
     
  • Mocz G.
    Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics.
    Mar Biotechnol (NY). 2007 May-Jun;9(3):305-28
    pmid: 17372780
     
     
  • Henderson JN, Remington SJ.
    The kindling fluorescent protein: a transient photoswitchable marker.
    Physiology (Bethesda). 2006 Jun;21:162-70.
    pmid: 16714474
     
  • Lukyanov KA, Chudakov DM, Fradkov AF, Labas YA, Matz MV, Lukyanov S.
    Discovery and properties of GFP-like proteins from nonbioluminescent anthozoa.
    Methods Biochem Anal. 2006;47:121-38
    pmid: 16335712
     
  • Lukyanov KA, Chudakov DM, Fradkov AF, Labas YA, Matz MV, Lukyanov SA.
    Discovery and properties of GFP-like proteins from non-bioluminescent Anthozoa.
    In: Green fluorescent protein: properties and applications. Chalfie M, Kain S, (Eds). Willey-Liss, New York ISBN-13: 978-0-471-73682-0. 2006;121-38 http://books.google.com
     
  • Chudakov DM, Lukyanov S, Lukyanov KA.
    Fluorescent proteins as a toolkit for in vivo imaging.
    Trends Biotechnol. 2005 Dec;23(12):605-13
    pmid: 16269193
     
  • Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV.
    Innovation: Photoactivatable fluorescent proteins.
    Nat Rev Mol Cell Biol. 2005 Nov;6(11):885-91
    pmid: 16167053
     
  • Quillin ML, Anstrom DM, Shu X, O'Leary S, Kallio K, Chudakov DM, Remington SJ.
    Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution.
    Biochemistry. 2005 Apr 19;44(15):5774-87
    pmid: 15823036
  1. Constructs used: pQE30-based bacterial expression vectors encoding KFP-Red.
  2. Expression system: E. coli JM109 DE-3 strain.
  3. Detection system: crystal structure of KFP-Red in nonkindled/dark state.
  • Wilmann PG, Petersen J, Devenish RJ, Prescott M, Rossjohn J.
    Variations on the GFP chromophore: A polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata.
    J Biol Chem. 2005 Jan 28;280(4):2401-4
    pmid: 15542608
  1. Constructs used: pQE10N-based bacterial expression vector carrying KFP-Red coding sequence (subcloned from pKindling-Red-N vector).
  2. Expression system: E. coli BL21 strain.
  3. Detection system: crystal structure of KFP-Red in nonkindled/dark state.
  • Chudakov DM, and Lukyanov KA.
    Using photoactivatable GFPs to study protein dynamics and function.
    In: Jorde LB, Little PFR, Dunn MJ and Subramaniam S. (Eds), Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley & Sons Ltd: Chichester. 2005;2129-37 http://books.google.com
     
  • Comley J.
    HIGH CONTENT SCREENING emerging importance of novel reagents/probes and pathway analysis.
    Drug Discovery World Summer. 2005;31-53 http://clients.parabolasoft.co.uk
     
  • Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA.
    Chromophore environment provides clue to "kindling fluorescent protein" riddle.
    J Biol Chem. 2003 Feb 28;278(9):7215-9
    pmid: 12496281
  1. Constructs used: pQE30-based bacterial expression vectors encoding mutants of non-fluorescent chromoprotein asFP595 from the sea anemone Anemonia sulcata.
  2. Expression system: E. coli.
  3. Detection system: Nikon Optiphot fluorescent microscope and Olympus US SZX12 fluorescent stereo microscope (TRITC filter set).
  • Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA.
    Kindling fluorescent proteins for precise in vivo photolabeling.
    Nat Biotechnol. 2003 Feb;21(2):191-4
    pmid: 12524551
  1. Constructs used: pQE30-based bacterial expression vector pKindling-Red-B; mRNA encoding KFP-Red; mammalian expression vector pKindling-Red-mito encoding mitochondria-targeted KFP-Red.
  2. Expression system: transformed E. coli; Xenopus laevis embryos microinjected with mRNA encoding KFP-Red; rat cell line PC12 transfected with pKindling-Red-mito vector (calcium phosphate transfection method).
  3. Detection system: Reversibility of KFP-Red kindling is controlled by both the light intensity level and the total light dose. Low-intensity green light causes no kindling of KFP-Red and can therefore be used as the excitation light to visualize both reversibly and irreversibly kindled KFP-Red without inducing background signal growth.
    Transformed E. coli colonies were observed through 5x objective Nikon Optihot fluorescent microscope (TRITC filter set, 100W lamp), reversible kindling of KFP-Red was achieved by irradiation through 20x objective for 4-5 sec., bright irreversible kindling was achieved by 10 sec. irradiation through 40x objective;
    Kindled KFP-Red in PC12 cells was monitored under Zeiss confocal LSM510 fluorescent microscope (1% power of 1mW 543nm laser line, TRITC filter set), reversible kindling of KFP-Red was achieved by several scans with 5% power laser and irreversible kindling by brief irradiation with 30% power laser.

Find more:

Copyright 2002-2023 Evrogen. All rights reserved.
Evrogen JSC, 16/10 Miklukho-Maklaya str., Moscow, Russia, Tel +7(495)988-4084, Fax +7(495)988-4085, e-mail:evrogen@evrogen.com