Eng | Ru


References citing KillerRed:

  • Formella I, Svahn AJ, Radford RAW, Don EK, Cole NJ, Hogan A, Lee A, Chung RS, Morsch M.
    Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo.
    Redox Biol. 2018 Aug 23;19:226-234 doi: 10.1016/j.redox.2018.08.011
    pmid: 30193184
  • Moiseev A, Snopova L, Kuznetsov S, Buyanova N, Elagin V, Sirotkina M, Kiseleva E, Matveev L, Zaytsev V, Feldchtein F, Zagaynova E, Gelikonov V, Gladkova N, Vitkin A, Gelikonov G.
    Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography.
    J Biophotonics. 2017 Aug 29.;[Epub ahead of print] doi: 10.1002/jbio.201700072
    pmid: 28853237
  • Liao ZX, Kempson IM, Fa YC, Liu MC, Hsieh LC, Huang KY, Wang LF.
    Magnetically Guided Viral Transduction of Gene-Based Sensitization for Localized Photodynamic Therapy To Overcome Multidrug Resistance in Breast Cancer Cells.
    Bioconjug Chem. 2017 Jun 21;28(6):1702-1708 doi: 10.1021/acs.bioconjchem.7b00162
    pmid: 28482158
  • Jiang HN, Li Y, Cui ZJ.
    Photodynamic Physiology-Photonanomanipulations in Cellular Physiology with Protein Photosensitizers.
    Front Physiol. 2017 Apr 4;8:191 doi: 10.3389/fphys.2017.00191
    pmid: 28421000
  • Tan SY, Teh C, Ang CY, Li M, Li P, Korzh V, Zhao Y.
    Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure.
    Nanoscale. 2017 Feb 9;9(6):2253-2261 doi: 10.1039/c6nr08869d
    pmid: 28124705
  • Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L.
    Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1.
    Mol Cell. 2017 Feb 8;pii: S1097-2765(17)30041-2 doi: 10.1016/j.molcel.2017.01.015. [Epub ahead of print]
    pmid: 28216227
  • Liang L, Lu Y, Zhang R, Care A, Ortega TA, Deyev SM, Qian Y, Zvyagin AV.
    Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
    Acta Biomater. 2017 Jan 4;pii: S1742-7061(17)30004-1 doi: 10.1016/j.actbio.2017.01.004. [Epub ahead of print]
    pmid: 28063989
  • Fransen M, Brees C.
    KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress.
    Methods Mol Biol. 2017;1595:165-179 doi: 10.1007/978-1-4939-6937-1_15
    pmid: 28409460
  • Tan R, Lan L.
    Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins.
    Methods Mol Biol. 2017;1587:139-146 doi: 10.1007/978-1-4939-6892-3_14
    pmid: 28324506
  • Tseng SJ, Huang KY, Kempson IM, Kao SH, Liu MC, Yang SC, Liao ZX, Yang PC.
    Remote Control of Light-Triggered Virotherapy.
    ACS Nano. 2016 Nov 22;10(11):10339-10346
    pmid: 27934080
  • Petrova NV, Luzhin AV, Serebrovskaya EO, Ryumina AP, Velichko AK, Razin SV, Kantidze OL.
    Inducing cellular senescence in vitro by using genetically encoded photosensitizers.
    Aging (Albany NY). 2016 Oct 14;8(10):2449-2462 DOI: 10.18632/aging.101065
    pmid: 27744420
  • Campbell AE, Bennett D.
    Targeting protein function: the expanding toolkit for conditional disruption.
    Biochem J. 2016 Sep 1;473(17):2573-89 doi: 10.1042/BCJ20160240
    pmid: 27574023
  • Takehara K, Tazawa H, Okada N, Hashimoto Y, Kikuchi S, Kuroda S, Kishimoto H, Shirakawa Y, Narii N, Mizuguchi H, Urata Y, Kagawa S, Fujiwara T.
    Targeted Photodynamic Virotherapy Armed with a Genetically Encoded Photosensitizer.
    Mol Cancer Ther. 2016 Jan;15(1):199-208 doi: 10.1158/1535-7163.MCT-15-0344
    pmid: 26625896
  • Pletneva NV, Pletnev VZ, Sarkisyan KS, Gorbachev DA, Egorov ES, Mishin AS, Lukyanov KA, Dauter Z, Pletnev S.
    Crystal Structure of Phototoxic Orange Fluorescent Proteins with a Tryptophan-Based Chromophore.
    PLoS One. 2015 Dec 23;10(12):e0145740 doi: 10.1371/journal.pone.0145740
    pmid: 26699366
  • Sarkisyan KS, Zlobovskaya OA, Gorbachev DA, Bozhanova NG, Sharonov GV, Staroverov DB, Egorov ES, Ryabova AV, Solntsev KM, Mishin AS, Lukyanov KA.
    KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light.
    PLoS One. 2015 Dec 17;10(12):e0145287 doi: 10.1371/journal.pone.0145287
    pmid: 26679300
  • Shirmanova M, Yuzhakova D, Snopova L, Perelman G, Serebrovskaya E, Lukyanov K, Turchin I, Subochev P, Lukyanov S, Kamensky V, Zagaynova E.
    Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model.
    PLoS One. 2015 Dec 11;10(12):e0144617 doi: 10.1371/journal.pone.0144617
    pmid: 26657001
  • Cho SJ, Kim SY, Jeong HC, Cheong H, Kim D, Park SJ, Choi JJ, Kim H, Chung HM, Moon SH, Cha HJ.
    Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.
    Stem Cell Reports. 2015 Nov 11;pii: S2213-6711(15)00301-X. doi: 10.1016/j.stemcr.2015.10.004. [Epub ahead of print]
    pmid: 26584542
  • Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M.
    Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts.
    Autophagy. 2015 Aug 3;11(8):1326-40 doi: 10.1080/15548627.2015.1061846
    pmid: 26086376
  • Yuzhakova DV, Shirmanova MV, Serebrovskaya EO, Lukyanov KA, Druzhkova IN, Shakhov BE, Lukyanov SA, Zagaynova EV.
    CT26 murine colon carcinoma expressing the red fluorescent protein KillerRed as a highly immunogenic tumor model.
    J Biomed Opt. 2015 Aug 1;20(8):88002 doi: 10.1117/1.JBO.20.8.088002
    pmid: 26277828
  • Sun L, Tan R, Xu J, LaFace J, Gao Y, Xiao Y, Attar M, Neumann C, Li GM, Su B, Liu Y, Nakajima S, Levine AS, Lan L.
    Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death.
    Nucleic Acids Res. 2015 Jul 27;43(13):6334-47 doi: 10.1093/nar/gkv598
    pmid: 26082495
  • Yan L, Kanada M, Zhang J, Okazaki S, Terakawa S.
    Photodynamic Treatment of Tumor with Bacteria Expressing KillerRed.
    PLoS One. 2015 Jul 27;10(7):e0131518 doi: 10.1371/journal.pone.0131518
    pmid: 26213989
  • Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B.
    Antioxidant cytoprotection by peroxisomal peroxiredoxin-5.
    Free Radic Biol Med. 2015 Jul;84:215-26 doi: 10.1016/j.freeradbiomed.2015.02.032
    pmid: 25772011
  • Tseng SJ, Liao ZX, Kao SH, Zeng YF, Huang KY, Li HJ, Yang CL, Deng YF, Huang CF, Yang SC, Yang PC, Kempson IM.
    Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour.
    Nat Commun. 2015 Mar 5;6:6456 doi: 10.1038/ncomms7456
    pmid: 25739372
  • Lan L, Nakajima S, Wei L, Sun L, Hsieh CL, Sobol RW, Bruchez M, Van Houten B, Yasui A, Levine AS.
    Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin.
    Nucleic Acids Res. 2014 Feb;42(4):2330-45 doi: 10.1093/nar/gkt1233
    pmid: 24293652
  • Jarvela T, Linstedt AD.
    Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization.
    Mol Biol Cell. 2014 Jan;25(1):133-44 doi: 10.1091/mbc.E13-07-0395
    pmid: 24227884
  1. Chromophore assisted light inactivation of GRASP 65 and GRASP 55 unlinked the Golgi ribbon, and the immediate effect of GRASP65-KR inactivation was a loss of cis rather than trans Golgi integrity, whereas inactivation of GRASP55-KR first affected the trans and not the cis Golgi.
  2. Constructs used: KillerRed fused to Golgi membrane protein GRASP.
  3. Expression system: HeLa cell line.
  4. Irradiation: An epifluorescence light at an intensity of 2W/cm2 for 30 sec.
  5. Detection system: Zeiss Axiovert 200 at 37°C with a 100x Plan-Apo NA 1.4 oil objective (Zeiss, Thornwood, NY) attached to an UltraView spinning-disk confocal system (Perkin-Elmer, Shelton, CT).
  • Liao ZX, Li YC, Lu HM, Sung HW.
    A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy.
    Biomaterials. 2014 Jan;35(1):500-8 doi: 10.1016/j.biomaterials.2013.09.075
    pmid: 24112805
  • Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M.
    Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells.
    Free Radic Biol Med. 2013 Dec;65:882-94 doi: 10.1016/j.freeradbiomed.2013.08.173
    pmid: 23988789
  1. Excessive peroxisomal ROS production by KillerRed elicits mitochondria-mediated cell death.
  2. Constructs used: KillerRed targeted to peroxisomes.
  3. Irradiation: Green light (irradiance 10mW/cm2) by using a KL 1500 LCD light source with a green insert filter (Schott).
  4. Detection system: VersaMax microplate reader.
  • McMillan SC, Xu ZT, Zhang J, Teh C, Korzh V, Trudeau VL, Akimenko MA.
    Regeneration of breeding tubercles on zebrafish pectoral fins requires androgens and two waves of revascularization.
    Development. 2013 Nov;140(21):4323-34 doi: 10.1073/pnas.1104097108
    pmid: 24089472
  1. Constructs used: KillerRed targeted to plasma membrane.
  2. Expression system: Transgenic zebrafish line.
  3. Detection system: Leica MZ FLIII dissection microscope, an AxioCam HSm digital camera.
  • Williams DC, Bejjani RE, Ramirez PM, Coakley S, Kim SA, Lee H, Wen Q, Samuel A, Lu H, Hilliard MA, Hammarlund M.
    Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed.
    Cell Rep. 2013 Oct 31;5(2):553-63 doi: 10.1016/j.celrep.2013.09.023
    pmid: 24209746
  • Byrne LC, Khalid F, Lee T, Zin EA, Greenberg KP, Visel M, Schaffer DV, Flannery JG.
    AAV-mediated, optogenetic ablation of Müller Glia leads to structural and functional changes in the mouse retina.
    PLoS One. 2013 Sep 27;8(9):e76075 doi: 10.1371/journal.pone.0076075
    pmid: 24086689
  • Kobayashi J, Shidara H, Morisawa Y, Kawakami M, Tanahashi Y, Hotta K, Oka K.
    A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed.
    Neurosci Lett. 2013 Aug 26;548:261-4 doi: 10.1016/j.neulet.2013.05.053
    pmid: 23748043
  • Waldeck W, Mueller G, Glatting KH, Hotz-Wagenblatt A, Diessl N, Chotewutmonti S, Langowski J, Semmler W, Wiessler M, Braun K.
    Spatial localization of genes determined by intranuclear DNA fragmentation with the fusion proteins lamin KRED and histone KRED und visible light.
    Int J Med Sci. 2013 Jul 7;10(9):1136-48 doi: 10.7150/ijms.6121
    pmid: 23869190
  • Vitriol EA, Wise AL, Berginski ME, Bamburg JR, Zheng JQ.
    Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia.
    Mol Biol Cell. 2013 Jul;24(14):2238-47 doi: 10.1091/mbc.E13-03-0156
    pmid: 23676663
  1. KillerRed is used to inactivate the actin regulatory protein cofilin1.
  2. Constructs used: Cofilin-KR constructed from pKillerRed-N.
  3. Expression system: CAD cell line.
  4. Irradiation: Chromophore-assisted light inactivation was performed by continuously irradiating a region containing the entire cell with the 561-nm laser line for 2 min with the laser power at 100% (9 mW at the microscope objective) and a 78-μs pixel dwell time.
  5. Detection system: Imaging for colocalization between cofilin-KR constructs and Lifeact-EGFP was performed on a Nikon Eclipse Ti inverted microscope equipped with a QuantEM EMCCD camera and 60×/1.49 NA Apochromat TIRF oil immersion objective. CALI experiments were performed on a Nikon A1R laser scanning confocal microscope equipped with an automated z-drive with Perfect Focus, multiple laser lines with acousto-optic tunable filter control, a second resonance scanner and 60×/1.49 NA Apo TIRF oil immersion objective.
  • Heo JM, Nielson JR, Dephoure N, Gygi SP, Rutter J.
    Intramolecular interactions control Vms1 translocation to damaged mitochondria.
    Mol Biol Cell. 2013 May;24(9):1263-73 doi: 10.1091/mbc.E13-02-0072
    pmid: 23468520
  • Shirmanova MV, Serebrovskaya EO, Lukyanov KA, Snopova LB, Sirotkina MA, Prodanetz NN, Bugrova ML, Minakova EA, Turchin IV, Kamensky VA, Lukyanov SA, Zagaynova EV.
    Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice.
    J Biophotonics. 2013 Mar;6(3):283-90 doi: 10.1002/jbio.201200056
    pmid: 22696211
  • Bonekamp NA, Islinger M, Lázaro MG, Schrader M.
    Cytochemical detection of peroxisomes and mitochondria.
    Methods Mol Biol. 2013;931:467-82 doi: 10.1007/978-1-62703-056-4_24
    pmid: 23027018
  1. Protocols for dual peroxisomes and mitochondria staining.
  • Yang JY, Yang WY.
    Bit-by-bit autophagic removal of parkin-labelled mitochondria.
    Nat Commun. 2013;4:2428 doi: 10.1038/ncomms3428
    pmid: 24013556
  • de Rosny E, Carpentier P.
    GFP-Like Phototransformation Mechanisms in the Cytotoxic Fluorescent Protein KillerRed Unraveled by Structural and Spectroscopic Investigations.
    J Am Chem Soc. 2012 Oct 31;134(43):18015-21 doi: 10.1021/ja3073337
    pmid: 23025285
  • Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK.
    ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy.
    Autophagy. 2012 Oct 1;8(10):1462-76 doi: 10.4161/auto.21211
    pmid: 22889933
  • Shibuya T, Tsujimoto Y.
    Deleterious effects of mitochondrial ROS generated by KillerRed photodynamic action in human cell lines and C. elegans.
    J Photochem Photobiol B. 2012 Aug 22;117C:1-12 doi: 10.1016/j.jphotobiol.2012.08.005
    pmid: 23000754
  • Kondrychyn I, Teh C, Garcia-Lecea M, Guan Y, Kang A, Korzh V.
    Zebrafish Enhancer TRAP transgenic line database ZETRAP 2.0.
    Zebrafish. 2011 Dec;8(4):181-2 doi: 10.1089/zeb.2011.0718
    pmid: 22181660
  • Vegh RB, Solntsev KM, Kuimova MK, Cho S, Liang Y, Loo BL, Tolbert LM, Bommarius AS.
    Reactive oxygen species in photochemistry of the red fluorescent protein "Killer Red".
    Chem Commun (Camb). 2011 May 7;47(17):4887-9 doi: 10.1039/c0cc05713d
    pmid: 21359336
  • Liu X, Shi R, Zou D, Li Z, Liu X, Chen Y, Yang X, Zhou Y, Zheng D.
    Positive selection vector using the KillerRed gene.
    Anal Biochem. 2011 May 1;412(1):120-2 doi: 10.1016/j.ab.2011.01.034
    pmid: 21284929
  1. Constructs used: pKillerRed-B vector.
  2. Expression system: E. coli.
  3. Detection system: KillerRed-mediated killing of E. coli by irradiation with white light for 20-60 min (medical surgical light, photon flux 1550 μmol/m2s).
  • Korzh V, Teh C, Kondrychyn I, Chudakov DM, Lukyanov S.
    Visualizing compound transgenic zebrafish in development: a tale of green fluorescent protein and KillerRed.
    Zebrafish. 2011 Mar;8(1):23-9 doi: 10.1089/zeb.2011.0689
    pmid: 21348774
  • Waldeck W, Mueller G, Wiessler M, Tóth K, Braun K.
    Positioning effects of KillerRed inside of cells correlate with DNA strand breaks after activation with visible light.
    Int J Med Sci. 2011 Jan 21;8(2):97-105
    pmid: 21278894
  1. Constructs used: expression vectors encoding fusions of KillerRed with histone H2A and lamin B1 (constructed based on the pKillerRed-C and pKillerRed-N vectors).
  2. Expression system: human prostate cancer cell line DU145 transfected with the help of TurboFect reagent.
  3. Detection system: activation of KillerRed by illumination with visible light (0-60 min).
  • Lee A, Mathuru AS, Teh C, Kibat C, Korzh V, Penney TB, Jesuthasan S.
    The habenula prevents helpless behavior in larval zebrafish.
    Curr Biol. 2010 Dec 21;20(24):2211-6 doi: 10.1016/j.cub.2010.11.025
    pmid: 21145744
  • Destaing O, Planus E, Bouvard D, Oddou C, Badowski C, Bossy V, Raducanu A, Fourcade B, Albiges-Rizo C, Block MR.
    beta1A integrin is a master regulator of invadosome organization and function.
    Mol Biol Cell. 2010 Dec;21(23):4108-19 doi: 10.1091/mbc.E10-07-0580
    pmid: 20926684
  • Teh C, Chudakov DM, Poon KL, Mamedov IZ, Sek JY, Shidlovsky K, Lukyanov S, Korzh V.
    Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics.
    BMC Dev Biol. 2010 Nov 2;10:110 doi: 10.1186/1471-213X-10-110
    pmid: 21040591
  1. Constructs used: membrane-targeted KillerRed expression vector.
  2. Expression system: transgenic zebrafish embryos.
  3. Detection system: Axiovert 200M upright microscope; activation of KillerRed with green light (UV filter set 15, BP 546/12nm, mercury arc lamp).
  • Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK, Isacoff EY, Baier H.
    Filtering of visual information in the tectum by an identified neural circuit.
    Science. 2010 Oct 29;330(6004):669-73 doi: 10.1126/science.1192949
    pmid: 21030657
  • Lukyanov KA, Serebrovskaya EO, Lukyanov S, Chudakov DM.
    Fluorescent proteins as light-inducible photochemical partners.
    Photochem Photobiol Sci. 2010 Oct 28;9(10):1301-6 doi: 10.1039/c0pp00114g
    pmid: 20672171
  • Roy A, Carpentier P, Bourgeois D, Field M.
    Diffusion pathways of oxygen species in the phototoxic fluorescent protein KillerRed.
    Photochem Photobiol Sci. 2010 Oct 28;9(10):1342-50 doi: 10.1039/c0pp00141d
    pmid: 20820672
  • Liu X, Liu X, Zhou Y, Zou D, Shi R, Li Z, Zheng D.
    T vector bearing KillerRed protein marker for red/white cloning screening.
    Anal Biochem. 2010 Oct 15;405(2):272-4 doi: 10.1016/j.ab.2010.06.031
    pmid: 20599648
  1. Constructs used: pKillerRed-B vector.
  2. Expression system: E. coli.
  3. Detection system: detecton of red fluorescents from KillerRed under fluorescent microscope with 510-560 nm excitation filter.
  • Butler MC, Itotia PN, Sullivan JM.
    A high-throughput biophotonics instrument to screen for novel ocular photosensitizing therapeutic agents.
    Invest Ophthalmol Vis Sci. 2010 May;51(5):2705-20 doi: 10.1167/iovs.08-2862
    pmid: 19834043
  1. Constructs used: KillerRed expressing vector.
  2. Expression system: stably transfected HEK 293 cells.
  3. Detection system: activation of KillerRed with LED at 575nm.
  • Waldeck W, Mueller G, Wiessler M, Brom M, Tóth K, Braun K.
    Autofluorescent proteins as photosensitizer in eukaryontes.
    Int J Med Sci. 2009 Dec 1;6(6):365-73
    pmid: 19960122
  1. Constructs used: pKillerRed-mem vector; expression vectors encoding fusions of KillerRed with histone H2A and Lamin B1 (constructed based on the pKillerRed-C and pKillerRed-N vectors).
  2. Expression system: stably transfected HeLa and DU145 cell lines (transfection with FuGENE reagent and selection with 500ug/ml of G418).
  3. Detection system: activation of KillerRed by illumination of cells in quartz cuvettes under one full-spectrum sunlight bulb with 32 Watt in a distance of 1 cm for 15-180 min.
  • Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, Popov VO, Kovalchuk MV, Wlodawer A, Dauter Z, Pletnev V.
    Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed.
    J Biol Chem. 2009 Nov 13;284(46):32028-39 doi: 10.1074/jbc.M109.054973
    pmid: 19737938
  • Carpentier P, Violot S, Blanchoin L, Bourgeois D.
    Structural basis for the phototoxicity of the fluorescent protein KillerRed.
    FEBS Lett. 2009 Sep 3;583(17):2839-42 doi: 10.1016/j.febslet.2009.07.041
    pmid: 19646983
  • Serebrovskaya EO, Edelweiss EF, Stremovskiy OA, Lukyanov KA, Chudakov DM, Deyev SM.
    Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein.
    Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9221-5 doi: 10.1073/pnas.0904140106
    pmid: 19458251
  1. Constructs used: recombinant protein composed of D5scFV fragment (4D5 is an antibody – Herceptin – against Her2) fused to the KillerRed N-terminus.
  2. Detection system: used SKOV-3 cell line (human ovarian carcinoma) to demonstrate binding of the fusion construct to cell surface by FACS and ELISA. Also demonstrated phototoxicity effects of the fusion construct on SKOV-3 cells after inc ubation for 1 hour at 4C, followed by white light irradiation (1W/cm2 for 10 min).
  • Samarkina ON, Popova AG, Gvozdik EY, Chkalina AV, Zvyagin IV, Rylova YV, Rudenko NV, Lusta KA, Kelmanson IV, Gorokhovatsky AY, Vinokurov LM.
    Universal and rapid method for purification of GFP-like proteins by the ethanol extraction.
    Protein Expr Purif. 2009 May;65(1):108-13 doi: 10.1016/j.pep.2008.11.008
    pmid: 19084068
  1. Constructs used: pQE30-based bacterial expression vectors encoding TagCFP, TagGFP, TagYFP, TagRFP, TurboGFP, TurboRFP, Dendra2, TurboFP602 and KillerRed.
  2. Expression system: E. coli strain M15 (pREP4).
  3. Detection system: purified recombinant FPs.
  • Mocz G.
    Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics.
    Mar Biotechnol (NY). 2007 May-Jun;9(3):305-28
    pmid: 17372780
  • Remington SJ.
    Fluorescent proteins: maturation, photochemistry and photophysics.
    Curr Opin Struct Biol. 2006 Dec;16(6):714-21
    pmid: 17064887
  • Wolff M, Wiedenmann J, Nienhaus GU, Valler M, Heilker R.
    Novel fluorescent proteins for high-content screening.
    Drug Discov Today. 2006 Dec;11(23-24):1054-60
    pmid: 17129823
  • Giepmans BN, Adams SR, Ellisman MH, Tsien RY.
    The fluorescent toolbox for assessing protein location and function.
    Science. 2006 Apr 14;312(5771):217-24
    pmid: 16614209
  • Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA.
    A genetically encoded photosensitizer.
    Nat Biotechnol. 2006 Jan;24(1):95-9
    pmid: 16369538
  1. Constructs used: vectors expressing KillerRed, mitochondria-targeted KillerRed, KillerRed fused with PH domain of phospholipase C.
  2. Expression system: E. coli, transiently transfected 293T and B16 cell lines.
  3. Detection system: activation of KillerRed by ilumination of cells (535-575nm excitation filter).
  • Bulina ME, Lukyanov KA, Britanova OV, Onichtchouk D, Lukyanov S, Chudakov DM.
    Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed.
    Nat Protoc. 2006;1(2):947-53
    pmid: 17406328
  1. Constructs used: vectors expressing membrane-targeted or mitochondria-targeted KillerRed.
  2. Expression system: mammalian cell lines.
  3. Detection system: activation of KillerRed with green light. Olympus CK40 microscope (40xobjective, mercury lamp, 535-575nm exc, 3.3W/cm2) or Leica DM IRE2 (63xobj, mercury lamp, 515-560nm, 7W/cm2). Phototoxicity is associated with photobleaching.

Find more:

Copyright 2002-2019 Evrogen. All rights reserved.
Evrogen JSC, 16/10 Miklukho-Maklaya str., Moscow, Russia, Tel +7(495)988-4084, Fax +7(495)988-4085, e-mail:evrogen@evrogen.com