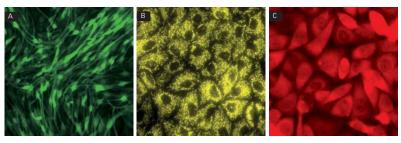
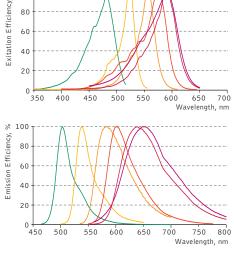



# Fluorescent reporters for in vivo cell labeling and monitoring of promoter activity


Evrogen TurboColors are superbright and fast maturing fluorescent proteins, specially recommended for applications requiring fast appearance of bright fluorescence, including cell and organelle labeling or tracking promoter activity. Far-red marker TurboFP635 is ideal for whole body imaging applications.




 $<sup>^{\</sup>star}$  Brightness is a product of extinction coefficient and quantum yield, divided by 1000.

## Bright labels of cells and cell organelles

TurboFPs possess bright stable fluorescence allowing monitoring of cells over extended periods of time. Despite their dimeric structure, TurboFPs are suitable for generation of fusions with subcellular localization signals targeting the reporters to desired cell compartments. Stable cell lines expressing TurboFPs are available.



Expression of TurboFPs in stably transfected mammalian cell lines. (A) - TurboGFP, C2C12 myoblast cells, (B) - mitochondria-targeted PhiYFP\*, PtK2 cells, (C) - TurboFP635, T24 cells.



% 100

TurboFPs normalized exitation/emission spectra

<sup>\*</sup> PhiYFP is a variant of TurboYFP optimized for stable expression.

Images of stably transfected cell lines were kindly provided by Dr. Christian Petzelt (Marinpharm).

### Perfect reporters of gene expression

TurboFPs mature noticeably faster than many other fluorescent proteins, allowing monitoring of gene expression from early promoters. The example below shows *in vivo* examination of the developing *Xenopus* embrios expressing either TurboGFP or EGFP. Destabilized protein variants (\*-dest1) allow accurate analysis of rapid and/or transient events in gene regulation.



In vivo comparison of TurboGFP and EGFP maturation in developing Xenopus embryos. Vectors expressing the respective fluorescent proteins under the control of CMV promoter were microinjected into animal poles of Xenopus embryos at the stage of two blastomeres. Living embryos were then photographed from the animal pole at the middle and late gastrula stages. Experimental data were presented by Dr. A. Zaraisky, Institute of Bioorganic Chemistry, RAS (Moscow, Russia).

### Suitable markers for whole body imaging

For deep imaging of animal tissues, the optical window favorable for light penetration is in near-infrared wavelengths, which requires proteins with emission spectra in the far-red wavelengths. TurboFP635 (scientific name Katushka) has emission maxima at 635 nm and is more bright, photostable and pH-stable than other cloned far-red fluorescent proteins. Superiority of TurboFP635 for whole-body imaging has been demonstrated by direct comparison with other red and far-red fluorescent proteins (Shcherbo *at al.* Nat Methods. (2007) 4:741-746).



# DsRed-Express and TurboFP635 expression in *Xenopus laevis*.

Transgenic 2.5 months intact animals expressing TurboFP635 and DsRed-Express under the control of cardiac actin promoter are shown from the dorsal side. TurboFP635 (on the right) is clearly visible in the whole body, while DsRed-Express (on the left) is not. This experiment clearly demonstrates the advantage of longer wavelength emission of TurboFP635 for the whole body imaging. Leica MZFLIII fluorescent stereomicroscope, excitation filter 546/10; emission filter 565LP.

### Available vectors

| Vector                           | Cat#  |
|----------------------------------|-------|
| Bacterial expression vectors     |       |
| pTurboGFP-B                      | FP513 |
| pTurboYFP-B                      | FP613 |
| pTurboRFP-B                      | FP233 |
| pTurboFP602-B                    | FP713 |
| Mammalian expression vectors     |       |
| pTurboGFP-C                      | FP511 |
| pTurboYFP-C                      | FP611 |
| pTurboRFP-C                      | FP231 |
| pTurboFP602-C                    | FP711 |
| pTurboFP635-C                    | FP721 |
| pTurboFP650-C                    | FP731 |
| pTurboGFP-N                      | FP512 |
| pTurboYFP-N                      | FP612 |
| pTurboRFP-N                      | FP232 |
| pTurboFP602-N                    | FP712 |
| pTurboFP635-N                    | FP722 |
| pTurboFP650-N                    | FP732 |
| pTurboGFP-dest1                  | FP519 |
| pTurboYFP-dest1                  | FP619 |
| pTurboRFP-dest1                  | FP239 |
| Vectors for labeling of mitochor | ndria |
| pTurboGFP-mito                   | FP517 |
| pTurboRFP-mito                   | FP237 |
| pTurboFP602-mito                 | FP717 |
| Promoterless vectors             |       |
| pTurboGFP-PRL                    | FP515 |
| pTurboYFP-PRL                    | FP615 |
| pTurboRFP-PRL                    | FP235 |
| pTurboFP602-PRL                  | FP715 |
| pTurboGFP-PRL-dest1              | FP518 |
| pTurboYFP-PRL-dest1              | FP618 |
| pTurboRFP-PRL-dest1              | FP238 |
|                                  |       |

For licensing information, please contact Evrogen at license@evrogen.com

For more information, please visit our web-site: www.evrogen.com